Cuenta de usuario

Inteligencia Artificial para predecir pacientes con mayor riesgo de dolor postquirúrgico

Tres modelos de aprendizaje automático mostraron varios factores que aumentarían el riesgo de un paciente de sufrir severo dolor postoperatorio.
Inteligencia Artificial para predecir pacientes con mayor riesgo de dolor postquirúrgico
[favorite_button]
Comentar

La inteligencia Artificial -IA- a partir de modelos de aprendizaje automático podría predecir cuáles son los pacientes que tienen mayor riesgo de dolor severo después de una intervención quirúrgica. Adicionalmente, la IA podría también identificar los pacientes que serían mayormente beneficiados con terapias para el dolor sin uso de opioides.

La investigación presentada en la reunión anual Anesthesiology 2020, se centra en buscar la razón por la que algunos pacientes experimentan más dolor postquirúrgico llegando a necesitar dosis más altas de opioides durante periodos de tiempo más largo aumentando el riesgo de sufrir efectos adversos por consumo excesivo de estas sustancias.

Si se conoce la razón por la cual algunos pacientes sufren mayores dolores que otros, los médicos anestesiólogos podría implementar un plan de anestesia con alternativas no opioides como por ejemplo, bloqueos nerviosos, epidurales, y otros medicamentos para el dolor.

Recordemos, que en la actualidad los médicos realizan encuestas a los pacientes con el fin de identificar cuáles tienen mayor riesgo de dolor después de una operación, indagando sobre su historial de ansiedad, calidad del sueño e inclusive trastornos depresivos.

También puede leer: 93% de los países vieron afectada la continuidad de sus servicios de salud mental

Inteligencia artificial para predicciones acertadas

Con este análisis el equipo científico buscaba un método más rápido que la encuesta, haciendo uso de un sistema de aprendizaje automático, con el cual el dispositivo aprende y evoluciona en función de los datos que se le suministran.

En este sentido, crearon tres modelos de aprendizaje automático evidenciando, que el género femenino, las edades más jóvenes, la obesidad y el dolor preexistente son factores que aumentan la posibilidad de sufrir dolores severos después de una cirugía. Todos los datos salieron del análisis de los registros médicos electrónicos.

“Planeamos integrar los modelos con nuestros registros médicos electrónicos para proporcionar una predicción del dolor posquirúrgico para cada paciente”, explica Mieke A. Soens, autora principal del estudio y anestesióloga en Brigham and Women’s Hospital

Añadiendo que si se tiene la capacidad de identificar un paciente con tendencia al dolor severo, el anestesiólogo podrá ajustar el plan de anestesia del paciente para maximizar las estrategias de manejo del dolor.

También puede leer: Herramienta de edición genética, nuevo Premio Nobel de Química

Datos del estudio

El análisis constó del estudio de 5.944 pacientes que se sometieron a varias cirugías entre las que se incluye: extirpación de vesícula biliar, histerectomía, reemplazo de cadera y cirugía de próstata.

De los participantes, 22% consumieron 90 miligramos de morfina 24 horas después de la cirugía. Se utilizaron 163 factores potenciales para predecir el dolor alto postoperatorio, basándose en una búsqueda bibliográfica y consultas con expertos.

Con estas bases se crearon los tres modelos de aprendizaje automático que sustrajeron los registros médicos de los pacientes y disminuyeron los 163 factores predictores que determinaban con mayor precisión la gravedad del dolor de los pacientes y la necesidad que tenía cada uno de usar opioides para controlar el dolor.

En una segunda parte del estudio, se compararon lo que predijeron los modelos algorítmicos con el uso real de opioides para controlar el dolor en cada paciente. En este sentido, se evidenció que los tres modelos tenían un porcentaje de precisión predictiva similar, lo que quiere decir que los tres modelos pudieron determinar que personas tenían más probabilidades de tener dolor severo y necesitaban dosis más altas de opioides aproximadamente el 80% de las veces.

Finalmente, el equipo de investigadores resaltó que es de suma importancia empezar a emplear estas tecnologías para identificar de forma selectiva cuáles pacientes necesitan altas dosis de opioides para ayudar a disminuir su uso desmesurado y descontrolado.

También puede leer: Descubrimiento sobre agujeros negros gana Premio nobel de física

Temas relacionados

Compartir Noticia

Facebook
Twitter
LinkedIn
WhatsApp
Noticias destacadas
Más Noticias

Escríbanos y uno de nuestros asesores le contactará pronto

Reciba atención inmediata mediante nuestros canales oficiales aquí:

Tu carrito de compras está vacío.

Volver a la tienda