Conozca el primer mapa molecular del corazón humano
Conéctate con nosotros

Innovación

Conozca el primer mapa molecular del corazón humano

Este complejo mapa puede ser una herramienta para los especialistas que buscan tratamientos individualizados o de última generación

Publicado

el

Conozca el primer mapa molecular del corazón humano

En una reciente publicación de la revista Nature, se presentó un nuevo mapa detallado a nivel celular y molecular del corazón humano. Con ello, se espera lograr una mayor comprensión sobre cómo funciona este órgano vital, comprender los fallos que se producen con las enfermedades cardiovasculares y trabajar en la búsqueda de nuevos tratamientos. 

El mayor atlas de corazón hasta la fecha fue elaborado por investigadores de la Universidad de Harvard, el Hospital Brigham and Women’s el Centro Max Delbrück de Medicina Molecular (MDC) de Alemania, el Imperial College de Londres y sus colaboradores mundiales. Para construirlo, analizaron medio millón de células individuales y núcleos, pertenecientes a seis áreas diferentes y obtenidas por 14 donantes. Gracias a ello, este mapa no solo evidencia la gran diversidad celular del órgano. También presenta a los especialistas e interesados tipos de células del músculo cardíaco, células inmunes protectoras del corazón y una intrincada red de vasos sanguíneos. Incluso, predice la comunicación entre células, un mecanismo indispensable para mantener el funcionamiento del corazón.

También le puede interesar: 20% DE LAS DEFUNCIONES POR CARDIOPATÍA CORONARIA ESTARÍA ASOCIADAS AL CONSUMO DEL TABACO

Construcción multidimensional DEL CORAZÓN desde la genética

A través de la secuenciación sc/snRNA-Seq con aprendizaje automático y técnicas de revelación de imagen in situ, se logró cuantificar la composición celular, destacando las características particulares de las cámaras, las diferencias entre hombres y mujeres encontradas gracias a los donantes. Dentro de cada compartimiento celular, se identificaron y validaron genes específicos del linaje prototípico y los genes con expresión cardíaca que no había sido reconocida previamente. 

“Esta es la primera vez que alguien ha mirado las células individuales del corazón humano a esta escala, lo que sólo ha sido posible con la secuenciación de células individuales a gran escala”, dijo Norbert Hübner, co-autor principal y profesor del Centro Max Delbrück de Medicina Molecular al reconocido medio de comunicación MedicalXpress. 

De acuerdo con la publicación, los investigadores concuerdan en que los cardiomiocitos (CM) son las células de mayor prevalencia. Además de ello, comprenden mayores en los ventrículos que en las aurículas. También hay disparidades según el sexo de los individuos: se evidenció un número más elevado de cardiomiocitos en mujeres que eno hombres. Las diferencias transcripcionales entre las poblaciones de aCM y vCM indican diferentes orígenes de desarrollo, hemodinámica distintiva fuerzas y funciones especializadas en las cámaras cardíacas. 

Otro de sus hallazgos más llamativos tiene que ver con los vasos sanguíneos y la observación del flujo en el corazón humano con un nivel de detalle sin precedentes. En la creación de atlas se observó cómo las células de estas venas y arterias se adaptan a las diferentes presiones y ubicaciones y cómo esto podría ayudar a los investigadores a entender qué es lo que falla en los vasos sanguíneos durante una enfermedad coronaria.

“Nuestro esfuerzo internacional proporciona un conjunto de información inestimable a la comunidad científica al iluminar los detalles celulares y moleculares de las células cardíacas que trabajan juntas para bombear sangre alrededor del cuerpo”, dijo la coautora principal Michela Noseda del Imperial College de Londres al mismo medio de comunicación. 

En otra línea, los científicos se centraron en la comprensión de la reparación del daño cardíaco. De forma particular, examinaron cómo las células del sistema inmunológico interactúan y se comunican con otras células en un corazón sano y cómo ésta difiere de la interacción en el músculo esqueletal. “El conocimiento de la gama completa de células cardíacas y su actividad genética es una necesidad fundamental para comprender cómo funciona el corazón y empezar a desentrañar cómo responde al estrés y la enfermedad”, expresan los autores del estudio. 

También le puede interesar: EL FUTURO DEL SISTEMA DE SALUD:ENTREVISTA CON CARLOS FELIPE MUÑOZ, GERENTE GENERAL DE CONSULTORSALUD

La observación en detalle sugiere, según los investigadores, objetivos específicos que pueden conducir a terapias individualizadas en el futuro, creando medicinas personalizadas para las enfermedades cardíacas y mejorando la eficacia de los tratamientos para cada paciente. El mapa del corazón hace parte de la iniciativa Human Cell Atlas, un recurso gratuito interactivo y de alcance global en el que participan numerosos grupos de investigación. 

Con la presentación de esta nueva herramienta, los investigadores esperan que sus resultados informen a los estudios de otras regiones cardíacas (válvulas, músculo papilar, sistema de conducción) e impulsen los estudios con grandes cohortes para dilucidar los papeles de la edad, el género y sobre la fisiología cardíaca normal. Esto podrá presentar conocimientos mucho más específicos que faciliten la comprensión mecánica de las enfermedades cardíacas. 

La exploración del atlas del corazón humano se puede realizar aquí

Innovación

Científicos crean biomaterial que podría restaurar el tejido óseo

Científicos de la Universidad Nacional de Investigación de Samara en Rusia desarrollaron un biomaterial que permitiría restaurar algunos componentes del tejido óseo.

Publicado

el

Científicos crean biomaterial que podría restaurar el tejido óseo

Científicos de la Universidad Nacional de Investigación de Samara en Rusia desarrollaron un biomaterial que permitiría restaurar algunos componentes del tejido óseo. En específico el tratamiento podría ayudar especialmente a pacientes que sufren de osteoporosis, una enfermedad que provoca debilidad en los huesos aumentando el riesgo de sufrir una fractura.

Yelena Timchenko, líder de la investigación y autora de este estudio, explicó que el material está basado en el uso del mineral hidroxiapatita el cristal principal de los huesos y principal factor aportante a la dureza y rigidez de estos.

De acuerdo con la investigadora. a diferencia de la hidroxiapatita común, usualmente usada para restaurar los componentes minerales de los huesos, el biomaterial desarrollado denominado “hidroxipatita alogénica” obtenida a través de una tecnología única podría lograr reemplazar la sección orgánica de los huesos.

“Este nuevo material permite restaurar los componentes minerales perdidos del tejido óseo para ajustar el tratamiento de la osteoporosis, así como también el componente orgánico, considerado la ‘carcasa’ de todo biotipo”, aseguró la experta.

El equipo científico analizó la calidad del biomaterial mejorando sus métodos de obtención resaltando que no hay análogos en el mundo de este material para tratar la osteoporosis. Del mismo modo, se han realizado ensayos experimentales sobre la componsición de tejido óseo con osteoporosis para evaluar la particularudad de sus estructuras en sus manifestaciones.

Recordemos, que a pesar de que esta condición es causada principalmente por cambios hormonales relacionados a la edad (prevalente en mujeres con menopausia) también puede ser provocada por vuelos espaciales en gravedad cero.

Según la NASA se ha evidenciado que los astronautas pierden el 10% de la masa ósea del fémur en viajes de 6 meses al espacio. En este sentido, la creación de este biomaterial podría usarse en ensayos preclínicos para estudiar su eficacia en la prevención de la osteoporosis tanto en la tierra como en el espacio.

También puede leer: Alto porcentaje de cardiopatías se derivan de mala alimentación

Continuar leyendo

Innovación

Proponen modelo computacional para estudiar la tuberculosis

El modelo computacional está diseñado para una mayor comprensión de las fases iniciales de infección

Publicado

el

proponen modelo computacional tuberculosis

Recientemente, se presentó en PLOS COMPUTATIONAL BIOLOGY un modelo computacional elaborado por la Unidad de Tuberculosis Experimental del Instituto de Investigación Germans Trias i Pujol (IGTP), diseñado para reproducir la dinámica de la tuberculosis en un pulmón virtual. La creación de esta herramienta está incentivada por el devastador efecto que causa la enfermedad hoy en día. Actualmente, pese a las estrategias de vacunación y el desarrollo de tratamientos, se mantiene como una de las 10 primeras causas de mortalidad en el mundo.

La enfermedad es provocada por la bacteria Mycobacterium tuberculosis, patógeno que infecta los alveolos pulmonares. Sin embargo, de acuerdo con estadísticas, un 90% de la población infectada nunca desarrolla la patología. Las complicaciones se centran en el 10% de personas que se ven afectadas por la patología, ya que se desconocen los factores principales que la desencadenan en estos individuos.

Para crear este modelo computacional, los investigadores partieron de la siguiente hipótesis: la reinfección endógena juega un papel importante en el mantenimiento de la infección latente. Para comprobarlo, desarrollaron un modelo basado en agentes que describe el crecimiento, la fusión y la proliferación de las lesiones de tuberculosis en un árbol bronquial computacional. Para que la herramienta sea funcional, el grupo de expertos creó un algoritmo interactivo que genera tubos bronquiales y bifurcaciones dentro de un volumen tridimensional de la superficie del pulmón, según explicó Clara Prats, integrante del equipo.

También le puede interesar: ESTOS SON LOS NUEVOS AJUSTES A LOS SOPORTES DE FACTURACIÓN DE SERVICIOS DE SALUD

Modelo 3D podrían predecir los avances de la tuberculosis

Además de este complejo sistema, el instrumento presentado se fundamenta en datos obtenidos por tomografías computarizadas en cinco modelos animales (minicerdos). Según el artículo, las imágenes utilizadas fueron aquellas que mostraban las etapas iniciales de infección por Mycobacterium tuberculosis. A su vez, éstas fueron las que sirvieron para generar el pulmón computarizado.

journal.pcbi .1007772.g002
Imagen de reconstrucción pulmonar. A la derecha se representa la ubicación y el tamaño de las lesiones pulmonares causadas por tuberculosis en los modelos animales. Fuente: PLOS COMPUTATIONAL BIOLOGY

“El resultado es un modelo que nos permite reproducir y comprender los datos experimentales en la computadora. Hemos podido mostrar una relación importante entre el número final de lesiones de tuberculosis y la frecuencia de reinfección endógena y el crecimiento de las lesiones”, dijo Martí Català, otro de los investigadores. El modelo también se ha utilizado como plataforma experimental in silico para explorar la transición de la infección latente a la enfermedad activa, identificando los principales factores desencadenantes: una elevada respuesta inflamatoria y la combinación de una respuesta inflamatoria moderada con una baja amplitud respiratoria.

Ante los resultados vistos con el software, los investigadores consideran que este modelo computacional permitirá hacer predicciones para futuras acciones como nuevos biomarcadores, estrategias preventivas y terapias para la tuberculosis en humanos.

También le puede interesar: ASMA EN COLOMBIA: ¿CÓMO ESTÁ LA CARGA DE LA ENFERMEDAD?

Continuar leyendo

Innovación

Uso de imágenes holográficas facilita detección de virus

Se espera que las imágenes holográficas sean un recurso de detección que pueda ser utilizado en nuevas investigaciones sobre tratamientos a las enfermedades que causan en la población

Publicado

el

imagenes holograficas deteccion virus

En el transcurso del 2020, la capacidad científica para producir nuevas herramientas ha sido puesta a prueba. Sin embargo, la utilización de imágenes holográficas es una muestra del papel destacado de la innovación en uno de los años más importantes para la medicina y el sector salud en general. La técnica fue desarrollada por un equipo de científicos de la Universidad de Nueva York (NYU), presentada en la revista Soft Matter.

De acuerdo con la publicación, el método está basado en la videomicroscopía holográfica, un sistema utilizado para la observación, representación y análisis de imágenes que se lleva a cabo gracias a rayos láser que facilitan la creación de las imágenes holográficas en pequeñas gotas. Aunque por lo general se usa para la revisión de muestras biológicas o químicas, el método creado en la NYU permitirá la detección de varios patógenos, incluyendo virus con precisión milimétrica y gran detalle.

Como se describe en la publicación, las superficies de las gotas se activan con sitios de unión bioquímica que atraen anticuerpos o partículas de virus, dependiendo de la prueba. La unión de anticuerpos o virus hace que las cuentas crezcan unas mil millonésimas de metro, lo que los investigadores de la Universidad de Nueva York han demostrado que pueden detectar a través de cambios en los hologramas que quedan en las gotas.

También le puede interesar: JOHNSON & JOHNSON SUSPENDE SU ENSAYO CLÍNICO

Imágenes holográficas: herramienta potencial en el futuro cercano

“Podemos analizar una docena de cuentas por segundo”, explica David Grier, profesor de física y uno de los integrantes del proyecto en un comunicado. “Lo que significa que podemos reducir el tiempo de una prueba de diagnóstico fiable de mil cuentas a 20 minutos. Y podemos medir esos cambios de forma rápida, fiable y barata”, añade a sus declaraciones. La innovadora herramienta de detección no solo aplica para los virus; ya que cuenta con potencial para evaluar el nivel de inmunización de cada persona.

Las gotas o perlas que se utilizan para la producción de imágenes holográficas son previamente sistematizadas con grupos de superficie. De esta manera, las gotas microscópicas se unen específicamente a los anticuerpos objetivo e impiden que otros patógenos se unan. Es decir, además de ser un test de gran precisión visual, podría ser un método eficaz para patógenos causantes de enfermedades asociadas a bacterias o virus como la tuberculosis o COVID-19.

“Este instrumento puede contar las partículas de virus dispersas en la saliva de los pacientes y también detectar y diferenciar los anticuerpos disueltos en la sangre“, añade Grier. “Esta flexibilidad se logra cambiando la composición de las gotas de prueba para modelar lo que estamos probando”. Además de lo anterior, el investigador mencionó que las gotas utilizadas comprueban la presencia de un objetivo particular, pero también puede comprobar la presencia de varios objetivos simultáneamente.

Los científicos dicen que esta capacidad puede utilizarse para desarrollar bibliotecas de gotas de testeo que pueden combinarse en kits de prueba para mezclarlas con muestras de pacientes. Esto ayudará a los médicos a distinguir entre los posibles diagnósticos, acelerar el tratamiento de los pacientes, reducir el riesgo de diagnósticos erróneos y reducir el costo de la asistencia sanitaria.

También le puede interesar: ASMA EN COLOMBIA: ¿CÓMO ESTÁ LA CARGA DE LA ENFERMEDAD?

Continuar leyendo

Evento Gratuito

Próximos Eventos

Innovación

Latinoamércia

Productos destacados

Tendencias

Indicadores / Cifras