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Significance

 Bacterial cytological profiling 
(BCP) is a well-established 
method to determine the 
mechanism of action (MOA) for 
antibiotics by examining the 
morphological changes that 
occur when bacteria are treated 
with a compound of interest. This 
study demonstrates the 
application of convolutional 
neural networks (CNN) to 
overcome technical challenges 
with a traditional approach to 
BCP, creating a robust platform 
to rapidly determine MOA for 
﻿Mycobacterium tuberculosis . We 
demonstrate the capability of this 
platform by using it to confirm 
the MOA of several compounds 
that target M. tuberculosis . Our 
findings underscore the potential 
of CNN-based BCP to enhance 
the accuracy and efficiency of 
MOA determination, particularly 
for challenging pathogens like M. 
tuberculosis .
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Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a significant global 
health threat, affecting an estimated 10.6 million people in 2022. The emergence of 
multidrug resistant and extensively drug resistant strains necessitates the development 
of novel and effective drugs. Accelerating the determination of mechanisms of action 
(MOAs) for these drugs is crucial for advancing TB treatment. This study introduces 
MycoBCP, a unique adaptation of bacterial cytological profiling (BCP) tailored to M. 
tuberculosis, utilizing the application of convolutional neural networks (CNNs) within 
BCP to overcome challenges posed by traditional image analysis techniques. Using 
MycoBCP, we analyzed the morphological effects of various antimicrobial compounds 
on M. tuberculosis, capturing broad patterns rather than relying on precise cell segmen-
tation. This approach circumvented issues such as cell clumping and uneven staining, 
which are prevalent in M. tuberculosis. In a blind test, MycoBCP accurately identified 
the MOA for 96% of the compounds, with a single misclassification of rifabutin, which 
was incorrectly categorized as affecting translation rather than transcription. The similar 
morphologies resulting from transcription and translation inhibition indicate a need 
for further refinement to distinguish them more effectively. Application of MycoBCP 
to a series of antitubercular agents successfully identified known MOAs and revealed 
unique effects, demonstrating its utility in early drug discovery and development. 
Our findings underscore the potential of CNN-based BCP to enhance the accuracy 
and efficiency of MOA determination, particularly for challenging pathogens like M. 
tuberculosis. MycoBCP represents a significant advancement in TB drug development, 
offering a robust and adaptable method for high-throughput screening of antimicrobial 
compounds.

microbiology | drug discovery | Mycobacterium tuberculosis | antimicrobials |  
convolutional neural networks

 Tuberculosis (TB) is a global health threat caused by Mycobacterium tuberculosis  (M. 
tuberculosis ) that has affected an estimated 10.6 million people in 2022 ( 1 ). A 4-mo long 
regimen of four drugs has been the recommended treatment of susceptible M. tuberculosis  
since 2022 and multidrug resistant (MDR) or extensively drug resistant (XDR) M. tuber-
culosis  treatments are longer than 6 mo ( 1 ,  2 ). Novel and effective drugs are urgently 
needed to fight MDR and XDR M. tuberculosis  and shorten treatment times. Accelerating 
mechanism of action (MOA) determination for drugs effective against M. tuberculosis  has 
the potential to significantly enhance TB drug development efforts.

 A robust microscopy-based method known as bacterial cytological profiling (BCP) has 
been effectively used to identify MOA for novel antibiotics and crude extracts in various 
bacterial species ( 3         – 8 ). BCP leverages the observation that inhibition of metabolic path-
ways induces reproducible changes in cellular architecture. The subsequent differences in 
morphology can be quantified and profiles corresponding to each metabolic pathway can 
be characterized ( 3         – 8 ). Compounds with similar MOAs can often be further distinguished 
based on their unique kinetics or concentration-dependent activity ( 3         – 8 ). To adapt this 
technology for M. tuberculosis , we developed MycoBCP, an imaging and analysis pipeline 
tailored to this pathogen.

 BCP has typically been heavily reliant on accurate cell segmentation and thresholding 
( 3         – 8 ). Traditional image analysis tools have been successful in segmenting and measuring 
cellular properties automatically in bacteria that exhibit minimal cell-to-cell variation and 
even staining ( 9     – 12 ). Attempts to develop BCP for M. tuberculosis  using these traditional 
tools that rely on cell segmentation and individual cell measurements have met with some 
success ( 13 ). However, these approaches, which at a core are based on identifying and 
measuring single cells, face significant challenges as M. tuberculosis  tends to clump, exhibit 
significant cell-to-cell variation, and stain unevenly. All BCP methods benefit from larger D
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and more varied datasets and such challenges slow data collection 
and curation. While modern deep learning approaches to cell 
segmentation have seen large successes ( 14 ,  15 ), here, we introduce 
a more straightforward solution that has several advantages over 
segmentation and cell measurement.

 Fundamentally, BCP presents an image classification challenge 
that is ideally suited for convolutional neural networks (CNNs). 
Instead of isolating and focusing on single cells, morphological 
differences can be seen as broad patterns in groups of cells—an 
approach that analyzes images holistically rather than relying 
entirely on individual cell boundaries. This approach circumvents 
the difficulties associated with automated image thresholding and 
cell segmentation which remain particularly problematic in M. 
tuberculosis .

 This study introduces MycoBCP, a unique adaptation of BCP 
tailored to M. tuberculosis , that applies CNNs to overcome chal-
lenges posed by traditional image analysis techniques. Using the 
MycoBCP platform, we correctly identified the MOA pathway 
in 96% (24/25) of compounds in a blind test. Among these, the 
exact target was identified for 76% (19/25) of the compounds. 
We then applied MycoBCP to a series of unique antitubercular 
agents. MycoBCP successfully identified the correct MOA of 
known compounds ( 16         – 21 ) and revealed effects for some com-
pounds not observed in previous studies, demonstrating its util-
ity in early drug discovery and development. 

Methods

Minimum Inhibitory Concentrations (22–24). M. tuberculosis mc2 6206 
H37Rv ΔRD1ΔpanCD ΔleuCD was incubated rolling at 30 °C in Middlebrook 
7H9 medium supplemented with 10% Oleic Albumin Dextrose Catalase, 0.5% 
glycerol, 0.05% Tween 20, 0.2% casamino acids, 48 µg/mL pantothenate, and 
50 µg/mL leucine (7H9-PL). Plates for minimum inhibitory concentration (MIC) 
testing were prepared by making 2× serial dilutions of the compounds in 
7H9+PL in round bottom 96-well plates which were then inoculated with a cell 
culture with the final OD590 ~0.02 in a final total volume of 200 µL per well. 
Growth was often uneven in the perimeter wells of plates, so MICs were confined 
to the central 60 wells. The plates were incubated at 37 °C without shaking for 
7 d, with growth evaluated by eye starting at day 5. The MIC was determined as 
the first well in a dilution series with no visible growth.

BCP. To prepare cultures for BCP, we diluted a parent M. tuberculosis culture 
grown in 7H9+PL at 30 °C to a final OD600 of ~0.06 to 0.08 which was then rolled 
at 30 °C for 18 to 20 h, a slower growth temperature that provided reproducible 
phenotypes. After this outgrowth, the culture was split into 2 mL aliquots and 
treated with sufficient compound to reach the desired test concentration, typically 
between 1× and 5× the MIC. These treated aliquots were then rolled at 30 °C, 
and 400 μL samples were harvested and fixed after 48 and 120 h of treatment. 
Specifically, each 400 μL sample was fixed at 30 °C for 20 min with a mixture 
of 100 μL of 16% paraformaldehyde, 3 μL of 8% glutaraldehyde, and 20 μL of 
0.4 M phosphate buffer, pH 7.5. After fixation, the cells were washed twice with 
200 μL of warm 7H9+PL concentrated to a final volume of ~30 μL and stained 
for 30 min. The cells were stained with 0.04 mg/mL FM 4-64 (Invitrogen), 0.1 to 
0.2 mM SYTO 40 (Invitrogen), and 4 µM SYTOX Green (Invitrogen). In images, 
membranes are shown in red, DNA in blue, and green staining indicates that cell 
integrity has been compromised; white scale bars are 1 µm.

Image Preparation. Full-field fluorescence microcopy images of samples pre-
pared for BCP are preprocessed from their original proprietary microscope file 
format to Tagged Image File Format. The original image dimensions 3 × 2,048 × 
2,048 are cropped to 3 × 1,800 × 1,800 by trimming 124 pixels from each 
edge to avoid optical artifacts. Each image is divided into nine subimages of 
dimensions 3 × 600 × 600. Image entropy [calculated as sum(p*log2(p)] where 
p is the normalized histogram counts) is used to automatically filter out images 
without a significant number of cells. A total of 46,052 subimages were used to 
train the CNN (SI Appendix, Tables S3 and S4).

For testing, a 600 pixel square sliding window is passed over the trimmed 
image using a step size of 60 pixels to create 400 subimages which are each 
passed to the trained CNN and produce a vector denoting a point in a latent space. 
Similarity scores are calculated by relating the location of unknown compound 
treated cells in this space to control compound treated cells using a scaled version 
of the average minimum distance.

Results

Antibacterial Treatment Produces Distinct Phenotypes in 
M. tuberculosis. To create a platform capable of classifying the 
MOA for potential antimicrobial agents, we conducted a series of 
experiments aimed at distinguishing between distinct phenotypes 
induced by treatment in M. tuberculosis. Following on previous 
work in BCP (3–8), we treated M. tuberculosis grown in 7H9+PL 
with drug concentrations between 1× and 5× the MIC for 48 
and 120 h. We fixed these samples, stained them using FM 
4-64, SYTO 40, and SYTOX Green and imaged them with 
high-resolution fluorescence microscopy. We observed distinct 
phenotypes in treated M. tuberculosis cells; however, unlike our 
previous work in BCP, morphological differences were subtle and 
required a high precision in cell segmentation and measurement 
to meaningfully classify MOAs. Traditional BCP methods, which 
involve segmenting cells and quantifying cellular properties such as 
cell length, cell area, and intensity, are well suited to organisms such 
as Escherichia coli and Acinetobacter baumannii (Fig. 1A). These 
cells exhibit uniform membrane and DNA staining that facilitates 
segmentation and measurement. Furthermore, most pathways 
in E. coli and A. baumannii produce distinct morphologies that 
can be characterized by critical features, such as the formation of 
toroidal DNA in compounds targeting translation (4, 8) (Fig. 1A). 
In comparison, M. tuberculosis has a propensity to clump, stains 
poorly, and generally does not display singular morphological 
features that are wholly unique to individual pathways. Thus, 
we adapted BCP to utilize neural networks which enabled us to 
capture broader, multicellular patterns and remove our reliance 
on precise thresholding and cell segmentation. In this way, we 
can de-emphasize common features and look for combinations of 
atypical features that can accurately discriminate MOA, thereby 
enhancing the accuracy of classification even when visual cues were 
less pronounced. The kinetics of each compound can vary greatly, 
necessitating multiple observations to capture the evolution of 
certain morphologies. Therefore, data were collected at two time 
points: 48 h and 120 h posttreatment.

CNN. The primary obstacle in employing CNNs for BCP lies in 
the need to amass extensive, highly specialized datasets—a crucial 
step to effectively train a network that is both generalizable and not 
prone to overfitting (25, 26). Here, we selected 23 antimicrobials 
to represent a wide range of pathways, producing a collection of 
over 5,000 images which were preprocessed into 46,052 subimages 
as outlined in the “Methods: Image Preparation.” The CNN was 
initially trained on this dataset as a classifier for MOA groups. We 
then removed the softmax activation layer to utilize the CNN as 
an encoder that takes images and outputs values from the final 
fully connected layer (Fig. 1 B and C and SI Appendix, Tables S3 
and S4).

 To facilitate the rapid addition and evaluation of compounds 
beyond the initial set of 23 used for training, we compiled an 
independent dataset of control compounds, termed the “feature 
set,” as shown in  Fig. 1B  . This feature set was processed by the 
CNN, which encoded the data into the latent space, allowing us 
to represent each compound as a cluster of points in this space. 
The encoded information is then utilized to assess compound 
similarity through the calculation of the average minimum D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 1

86
.3

1.
22

1.
10

1 
on

 F
eb

ru
ar

y 
10

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
18

6.
31

.2
21

.1
01

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2419813122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2419813122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2419813122#supplementary-materials


PNAS  2025  Vol. 122  No. 6 e2419813122� https://doi.org/10.1073/pnas.2419813122 3 of 7

distance between points representing different compounds. We 
scale this metric from 0 to 100 and plot similarity to all control 
compounds to provide a clear, intuitive visualization of compound 
similarity based on their MOA ( Fig. 1D  ). For example, cells 
treated with Gatifloxacin produce high similarity scores to control 
cells treated with a variety of DNA replication inhibitors and low 
scores against compounds affecting other pathways ( Fig. 1D  ). 
Notably, some control compounds exhibit phenotypes that are 
indistinguishable; hence, we categorize these compounds into 
groups that approximately reflect the pathways they affect, as 
detailed in SI Appendix, Table S1 .  

Blind Test. To assess the reliability of our platform, we conducted 
a blind test using our full set of 23 control compounds and two 
samples of dimethyl sulfoxide, which served as negative controls. 
A fresh set of images, collected independently from those used in 

the training and feature sets, was used for this evaluation (Fig. 2). 
The compounds were classified without prior knowledge of their 
identities to simulate a realistic application scenario. The average 
maximum similarity score in this test was 90.69 ± 6.93, indicating 
a high level of reproducibility and confidence in matching to the 
controls.

 Our platform successfully identified the correct MOA for 96% 
of the samples, accurately classifying 24 out of the 25 compounds 
( Fig. 2 ). The sole misclassification involved rifabutin, which was 
incorrectly predicted to impact the translation pathway rather 
than its categorized target, transcription. To determine whether 
this was an isolated case or indicative of a broader issue with 
rifamycins, we conducted additional unblinded tests with 
rifampicin and rifapentine. Both compounds were correctly clas-
sified as transcription inhibitors (SI Appendix, Fig. S5 ) suggesting 
no specific issue in the determination of rifamycin MOAs. 

Fig. 1.   (A) E. coli, A baumannii, and M. tuberculosis cells treated with compounds affecting different pathways. Membranes are red (FM 4-64), DNA is blue 
(SYTO 40), and membrane permeability is green (SYTOX Green). Scale bar is 1 µm. (B) Model architecture. Arrows show the information flow among different 
components. Training data (orange) is used to train the CNN. Feature data (blue) are used with the trained CNN as an encoder to map out areas of a feature 
space with known MOAs. Cells treated with unknown compounds (purple) are processed similarly to feature data and MOA is evaluated based on similarity to 
feature data as represented by a similarity score. (C) CNN model architecture describing the shape of each convolution and fully connected layer. (D) Similarity 
scores for gatifloxacin-treated cells compared to all control compounds sorted by MOA pathway.
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Furthermore, 19 out of the 25 compounds (76%) were matched 
to the exact same compound in the control group, demonstrating 
the platform’s potential ability to discern differences within the 
established MOA pathways.  

MOA and Compound Similarities. BCP technology operates by 
correlating specific morphologies with their respective cellular 
targets (3–8). In an ideal scenario, compounds targeting the 
same cellular function should exhibit identical morphologies 
and thus be classified similarly. This principle also extends to our 
control antimicrobials, many of which target similar pathways 
or points along the same pathway. Thus, we aimed to evaluate 
the distinctiveness of individual pathways. Fig. 3 illustrates the 
similarity among our control antimicrobials at the different points 
of 48 (Fig. 3A) and 120 h (Fig. 3B), with green indicating similarity 
and white denoting dissimilarity. Bright green squares along the 
main diagonal suggest high similarity, indicating compounds that 
group together. The significant high-similarity areas align well with 
the groups into which we organized these compounds based on 
their targets. Average similarity score for a control to those within 
its MOA group was 82.3 whereas the similarity to controls outside 
the MOA group was an average of 28.2.

 Notably, similarity regions outside the main diagonal suggest 
potential misclassifications between targets. For example, the 
group of compounds affecting fatty acid or mycolic acid pathways 
(FA/MA) shows high similarity to the cell wall group 2 (CW2; 
MmpL3/arabinogalactan inhibitors) at 48 h ( Fig. 3A  ). While met-
abolically plausible, since FA/MA targets are upstream of CW2 
targets, this suggests that a 48-h observation alone is inadequate 
for distinguishing these groups. However, by 120 h, this similarity 
largely vanishes ( Fig. 3B  ), supporting the need for multiple 
time points.

 We chose 48 h to capture early morphological changes, par-
ticularly for rapidly acting compounds like membrane disruptors, 
and 120 h to observe later-developing changes that provide 

distinguishable morphologies for most control compounds. To 
underscore changes occurring between these two time points, we 
plotted the difference between similarity scores ( Fig. 3C  ). Red 
indicates decreasing similarity over time, whereas green denotes 
emerging similarities by 120 h that were not evident at 48 h. This 
highlights pathways where data from 48 h may be more discrim-
inative, and instances where observations at 120 h are crucial, 
reinforcing the necessity of multiple time points for accurate clas-
sification. While cells treated with transcription and translation 
inhibitors generate similar images and produce related similarity 
scores, the platform currently identified 4 out of 5 transcription 
and translation inhibitors ( Fig. 2 ).  

Antitubercular Agents. We have previously identified many 
molecules with activity against M. tuberculosis in aerobic culture 
(16–21). We selected eight of these which represented classes 
with known targets or with targets which were predicted from 
studies with resistant mutants. Compounds were tested blinded 
to avoid bias in interpretation and the identity of molecules were 
revealed after the mode of action prediction. We tested these 
using the MycoBCP platform, to determine how effectively it 
identifies MOAs outside our standard control library. Imaging  
M. tuberculosis after treatment with these compounds revealed 
distinct MOAs for each compound that grouped into two sets 
(Fig. 4A). We found that, using the concentrations and time points 
tested, the MycoBCP platform correctly identified the MOA for 
these two unique sets of compounds.

 One set of compounds (TPN-0001046, TPN-0001390, 
TPN-0091218) induced morphological changes indicative of 
impacts on the cell wall and were predicted to target the arabino-
galactan biosynthesis and lipid transporter protein MmpL3 ( Fig. 4  
and SI Appendix, Fig. S3 ). This set of compounds contained a 
known MmpL3 inhibitor (AU1235) as well as aryl indoles that 
we previously identified as MmpL3 inhibitors based on their loss 
of activity against strains with mutations in MmpL3 ( 21 ). The 

Fig. 2.   Similarity matrix for blinded compounds compared to control compounds. High similarity scores are green and low are white. The highest similarity 
score for each blinded compound is highlighted with a black box.
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platform was able to correctly identify both known and suspected 
MmpL3 inhibitors.

 The second set of compounds, TPN-0006267, TPN-0006304, 
TPN-0072437, TPN-0073094, and TPN-0099423, were catego-
rized as adenosine triphosphate synthase/proton motive force 
(ATP/PMF) inhibitors by the CNN. This set included known 
inhibitors of the cytochrome bc1 complex (QcrB) and spanned mul-
tiple chemical classes: Azabenzimidazoles, Triazolopyrimidines, 
Morpholinobenzamides, and Imidazopyridines ( 16       – 20 ). While the 
MmpL3 inhibitors produced cells with a distinctive morphology 
and very high similarity scores, the QcrB inhibitors presented more 
subtle morphological changes and were sensitive to the kinetics of 

treatment resulting in lower similarity scores within the group 
( Fig. 4 C  and D  ). Previous research ( 16 ,  17 ) suggests that these 
QcrB inhibitors exhibit similar activity, raising intriguing questions 
about potential heterogeneity within these series.   

Discussion

CNN and Feature Space. Targeting specific pathways in M. 
tuberculosis leads to reproducible physical changes in cells, a key 
observation that enables BCP to discriminate and identify MOA. 
Previous work with Gram-negative and Gram-positive bacteria has 
successfully utilized traditional image analysis techniques for BCP, 

Fig. 3.   (A) Similarity matrix for control compounds using data at 48 h of treatment. A maximum similarity score of 100 is represented by green and a minimum 
similarity score of 0 is white. (B) Similarity matrix for control compounds using data at 120 h of treatment with the same color representation as in A. (C) Difference 
between similarity scores at 120 h of treatment and 48 h of treatment. A positive difference of 100 is represented by green and a negative difference of −100 is 
represented by red. Green shows a higher similarity between compounds developing at 120 h, whereas red shows a lower similarity between compounds at 120 h.
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involving thresholding, segmentation, and measurement to extract 
physical features such as cell length, width, area, and perimeter (3–
8). These features provide meaningful biological insights into the 
effects of various antimicrobial compounds. While the phenotypes 
of bacteria such as E. coli treated with different compounds are so 
distinctive that AI approaches are not necessary for classification 
(4), such an approach has an advantage of increasing throughput 
and automation.

 In this study, we explored the use of a CNN as an encoder to 
replace the tasks of thresholding, segmentation, and measurement 
traditionally required in BCP in order to study a bacterium where 
the phenotypes are less distinct. Instead of directly classifying 
images, the CNN encodes each image into a latent space, result-
ing in a set of values that serve as a comprehensive representation 
of the morphological changes induced by different compounds. 
This latent space encoding allows us to capture subtle and com-
plex patterns in M. tuberculosis  cell morphology that may be 
missed by conventional methods. By employing the CNN as an 
encoder, we gain several significant advantages. First, this 
approach bypasses the challenges associated with precise cell 
segmentation and measurement, which are particularly prob-
lematic for M. tuberculosis  due to its tendency to clump and stain 
unevenly. Second, the latent space generated by the CNN pro-
vides a flexible framework for analyzing new compounds. We 
can add new compounds to our control set and compare them 
within this latent space without the need for retraining the net-
work each time a new compound is introduced. This flexibility 
is critical as no set of curated control compounds would be 
comprehensive enough to cover every possible target. Our find-
ings suggest that the use of CNNs in BCP can significantly 
enhance the accuracy and efficiency of MOA determination, 
particularly for challenging pathogens like M. tuberculosis . 
Integrating modern machine learning approaches into BCP rep-
resents a significant advancement in the field of BCP, offering a 
more adaptable and precise method for MOA identification.  

Blind Test. Our platform accurately identified the MOA for 
96% of the compounds in a blind test. The sole misclassification 
involved rifabutin, which was incorrectly categorized as affecting 

the translation pathway instead of its actual target, the transcription 
pathway. A detailed analysis of our controls (Fig.  3 A and B) 
revealed regions where treated cells exhibited high similarity 
between compounds classified under translation and transcription. 
Despite the correct classification of rifampicin and rifapentine 
(SI Appendix, Fig. S5), the misclassification of rifabutin highlights 
a challenge in differentiating between certain compounds in  
M. tuberculosis. While compounds targeting these pathways are 
easily distinguished between in E. coli, they result in overlapping 
morphological phenotypes in M. tuberculosis, making it difficult 
for the CNN to identify discriminating features between these 
specific MOAs. This observation underscores the importance of 
further refining our profiling methods to enhance the resolution 
between these two pathways.

 Future investigations will focus on expanding our training data 
to include a wider variety of targets, aiming to improve general-
izability to new compounds. The high rate of matching to not 
only the correct pathway but also to the identity of the control 
compounds in our blind test may be influenced by the inclusion 
of the same compounds in both the training and test sets. However, 
because the data were collected entirely independently, this sug-
gests that there may be potential to further separate compounds 
in even closely related pathways. Despite this limitation, our plat-
form’s overall accuracy demonstrates its robustness and potential 
for high-throughput MOA determination in TB drug develop-
ment. The ability to accurately classify MOA for 96% of the com-
pounds and match 76% to the exact control compound underscores 
the effectiveness of MycoBCP in discerning subtle differences 
in MOA.

 MycoBCP clearly identified known and suspected MmpL3 
inhibitors as a distinct class with specific morphological changes. 
The patterns were distinct from other cell wall inhibitors and raise 
the possibility of using MycoBCP to rapidly identify new MmpL3 
inhibitors, as well as monitor for target drift during the hit-to-lead 
and lead optimization phases of drug discovery. MycoBCP also 
confirmed that the mode of action of compounds suspected to be 
QcrB inhibitors do indeed disrupt respiration as expected and raised 
biological questions about these compounds. The heterogeneity of 
the response, indicated by their low similarity scores to each other, 

Fig. 4.   (A) Similarity matrix for antitubercular compounds compared to control compounds at 48 h of treatment. High similarity scores are green and low are 
white. (B) Similarity matrix for antitubercular compounds compared to control compounds at 120 h of treatment. (C) Similarity matrix for antitubercular compounds 
compared against themselves at 48 h of treatment. (D) Similarity matrix for antitubercular compounds compared against themselves at 120 h of treatment.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
86

.3
1.

22
1.

10
1 

on
 F

eb
ru

ar
y 

10
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

18
6.

31
.2

21
.1

01
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2419813122#supplementary-materials


PNAS  2025  Vol. 122  No. 6 e2419813122� https://doi.org/10.1073/pnas.2419813122 7 of 7

in the QcrB inhibitors was intriguing and suggests that there are 
different subpopulations of bacteria with differing sensitivities to 
inhibition of respiration, even during aerobic growth. Since QcrB 
inhibitors are largely bacteriostatic against replicating bacilli, but 
bactericidal against non-replicating (nutrient-starved) bacteria, this 
might be due to bacteria being in different physiological states.

 Combining deep learning and BCP has shown significant 
advantages over traditional cell segmentation and measurement. 
Properly thresholding cells to get good segmentation often relies 
on even staining of cell membranes and spacing of cells. Poor 
staining leads to unclear cell borders while the clumping of cells 
creates problems with the accurate determination of the correct 
focal plane. A common approach is to filter out cells that are not 
recognized by a segmentation algorithm, but this leads to a sys-
tematic loss of information from clumped and poorly stained cells. 
Less automated measurements can fix this but are time-consuming 
and can be a major barrier to adding new data to a platform. 
Additionally, once segmented, striking a balance in feature selec-
tion to retain generality while striving for accuracy can be difficult 
with an abundance of features to measure.

 Utilizing CNNs as encoders eliminates these issues at the cost 
of requiring more data. While traditional BCP methods can be 
built on a handful of microscopy images, getting meaningful 

results from neural networks can require tens to hundreds of 
 thousands of datapoints. In exchange, CNNs are rapid, can be 
integrated into a fully automated pipeline, and can utilize infor-
mation from both intra- and intercellular sources. By using a CNN 
as an encoder and not incorporating a classifier, we can quickly 
add new data for comparison to our feature space without the need 
to retrain. As BCP platforms become more widespread and more 
data are accumulated, deep learning approaches will begin to see 
more use.     

Data, Materials, and Software Availability. Code and example files (27) 
can be found at github.com/MycoBCP/MycoBCP. Some study data are available. 
Training data for the CNN described in this manuscript exceeds 40,000 high 
resolution fluorescence microscopy images. Instead, we provide a checkpoint of 
the trained network that can be used on similar images.
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